We are dedicated

to integrating latest material developments into state-of-the-art fuel cells, electrolyzers and batteries.

We focus

on devices with polymer electrolyte membranes, mostly proton or anion exchange membranes.

We develop

membranes, electrodes and membrane-electrode-assemblies for various electrochemical devices.

We analyze

materials from milimeter to nanometer range using cutting-edge equipment to uncover bottlenecks.

We cooperate

with leading material experts developing new catalysts or polymers to integrate their materials.

Contract Research

We offer individual services and contract research: from characterization, materials to consulting and seminars.

We work on PFAS-free fuel cells and electrolyzers since 2018 ...

… substituting hazardous PFAS in PEM fuel cells, PEM electrolysis and AEM electrolysis with the goal to maintain performance and durability.

PFAS: Per- and polyfluoroalkyl substances
PEM: Proton exchange membrane
AEM: anion exchange membrane


Water electrolysis (PEM)

  1. Hegge, Friedemann; Lombeck, Florian; Cruz Ortiz, Edgar; Bohn, Luca; Holst, Miriam von; Kroschel, Matthias et al. (2020): Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers. In: ACS Applied Energy Materials 3 (9), S. 8276–8284.
  2. Ortiz, Edgar Cruz; Hegge, Friedemann; Breitwieser, Matthias; Vierrath, Severin (2020): Improving the performance of proton exchange membrane water electrolyzers with low Ir-loaded anodes by adding PEDOT. PSS as electrically conductive binder. In: RSC advances 10 (62), S. 37923–37927.
  3. Klose, Carolin; Saatkamp, Torben; Münchinger, Andreas; Bohn, Luca; Titvinidze, Giorgi; Breitwieser, Matthias et al. (2020): All‐Hydrocarbon MEA for PEM Water Electrolysis Combining Low Hydrogen Crossover and High Efficiency. In: Advanced Energy Materials 10 (14), S. 1903995.

Water electrolysis (AEM)

  1. Koch, Susanne; Metzler, Lukas; Kilian, Sophia K.; Heizmann, Philipp A.; Lombeck, Florian; Breitwieser, Matthias; Vierrath, Severin (2023): Toward Scalable Production. Catalyst‐Coated Membranes (CCMs) for Anion‐Exchange Membrane Water Electrolysis via Direct Bar Coating. In: Advanced Sustainable Systems 7 (2), S. 2200332.
  2. Koch, Susanne; Disch, Joey; Kilian, Sophia K.; Han, Yiyong; Metzler, Lukas; Tengattini, Alessandro et al. (2022): Water management in anion-exchange membrane water electrolyzers under dry cathode operation. In: RSC advances 12 (32), S. 20778–20784.
  3. Koch, Susanne; Heizmann, Philipp A.; Kilian, Sophia K.; Britton, Benjamin; Holdcroft, Steven; Breitwieser, Matthias; Vierrath, Severin (2021): The effect of ionomer content in catalyst layers in anion-exchange membrane water electrolyzers prepared with reinforced membranes (Aemion+™). In: Journal of Materials Chemistry A 9 (28), S. 15744–15754.

CO2 electrolysis

  1. Disch, Joey; Bohn, Luca; Koch, Susanne; Schulz, Michael; Han, Yiyong; Tengattini, Alessandro et al. (2022): High-resolution neutron imaging of salt precipitation and water transport in zero-gap CO2 electrolysis. In: Nature Communications 13 (1), S. 6099.
  2. Disch, Joey; Bohn, Luca; Metzler, Lukas; Vierrath, Severin (2023): Strategies for the mitigation of salt precipitation in zero-gap CO 2 electrolyzers producing CO. In: Journal of Materials Chemistry A 11 , S. 7344-7357.
  3. Seteiz, Khaled; Häberlein, Josephine N.; Heizmann, Philipp A.; Disch, Joey; Vierrath, Severin (2023): Carbon black supported Ag nanoparticles in zero-gap CO 2 electrolysis to CO enabling high mass activity. In: RSC advances 13 (27), S. 18916–18926.

Fuel cells

  1. Nguyen, Hien; Klose, Carolin; Metzler, Lukas; Vierrath, Severin; Breitwieser, Matthias (2022): Fully hydrocarbon membrane electrode assemblies for proton exchange membrane fuel cells and electrolyzers. An engineering perspective. In: Advanced Energy Materials 12 (12), S. 2103559.
  2. Hien Nguyen, Florian Lombeck, Claudia Schwarz, Philipp A. Heizmann, Michael Adamski, Hsu-Feng Lee, Benjamin Britton , Steven Holdcroft, Severin Vierrath and Matthias Breitwieser (2021): Hydrocarbon-based Pemion™ proton exchange membrane fuel cells with state-of-the-art performance. In: Sustainable Energy & Fuels 5.14 (2021): 3687-3699.
  3. Böhm, Thomas; Moroni, Riko; Breitwieser, Matthias; Thiele, Simon; Vierrath, Severin (2019): Spatially resolved quantification of ionomer degradation in fuel cells by confocal Raman microscopy. In: Journal of The Electrochemical Society 166 (7), F3044.


  1. Shanahan, Brian; Britton, Benjamin; Belletti, Andrew; Vierrath, Severin; Breitwieser, Matthias (2021): Performance and stability comparison of Aemion™ and Aemion+™ membranes for vanadium redox flow batteries. In: RSC advances 11 (22), S. 37923-37927.
  2. Shanahan, Brian; Böhm, Thomas; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Vierrath, Severin et al. (2019): 30 μm thin hexamethyl-p-terphenyl poly (benzimidazolium) anion exchange membrane for vanadium redox flow batteries. In: Electrochemistry Communications 102, S. 37–40.
  3. Vierrath, Severin; Zielke, Lukas; Moroni, Riko; Mondon, Andrew; Wheeler, Dean R.; Zengerle, Roland; Thiele, Simon (2015): Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study. In: Electrochemistry Communications 60, S. 176–179.
Our research is funded by