Electrochemical Energy Systems

Junior Research Group


We are dedicated

to integrating latest material developments into state-of-the-art fuel cells, electrolyzers and batteries.

We focus

on devices with polymer electrolyte membranes, mostly proton or anion exchange membranes.

We develop

membranes, electrodes and membrane-electrode-assemblies for various electrochemical devices.

We analyze

materials from milimeter to nanometer range using cutting-edge equipment to uncover bottlenecks.

We cooperate

with leading material experts developing new catalysts or polymers to integrate their materials.


Recent achievements



Water electrolysis

  1. Hegge, Friedemann; Lombeck, Florian; Cruz Ortiz, Edgar; Bohn, Luca; Holst, Miriam von; Kroschel, Matthias et al. (2020): Efficient and Stable Low Iridium Loaded Anodes for PEM Water Electrolysis Made Possible by Nanofiber Interlayers. In: ACS Applied Energy Materials 3 (9), S. 8276–8284.
  2. Ortiz, Edgar Cruz; Hegge, Friedemann; Breitwieser, Matthias; Vierrath, Severin (2020): Improving the performance of proton exchange membrane water electrolyzers with low Ir-loaded anodes by adding PEDOT. PSS as electrically conductive binder. In: RSC advances 10 (62), S. 37923–37927.
  3. Klose, Carolin; Saatkamp, Torben; Münchinger, Andreas; Bohn, Luca; Titvinidze, Giorgi; Breitwieser, Matthias et al. (2020): All‐Hydrocarbon MEA for PEM Water Electrolysis Combining Low Hydrogen Crossover and High Efficiency. In: Advanced Energy Materials 10 (14), S. 1903995.

Fuel cells

  1. Hien Nguyen, Florian Lombeck, Claudia Schwarz, Philipp A. Heizmann, Michael Adamski, Hsu-Feng Lee, Benjamin Britton , Steven Holdcroft, Severin Vierrath and Matthias Breitwieser(2021): Hydrocarbon-based Pemion™ proton exchange membrane fuel cells with state-of-the-art performance. In: Sustainable Energy & Fuels 5.14 (2021): 3687-3699.
  2. Böhm, Thomas; Moroni, Riko; Breitwieser, Matthias; Thiele, Simon; Vierrath, Severin (2019): Spatially resolved quantification of ionomer degradation in fuel cells by confocal Raman microscopy. In: Journal of The Electrochemical Society 166 (7), F3044.
  3. Breitwieser, Matthias; Klingele, Matthias; Vierrath, Severin; Zengerle, Roland; Thiele, Simon (2018): Tailoring the Membrane‐Electrode Interface in PEM Fuel Cells. A Review and Perspective on Novel Engineering Approaches. In: Advanced Energy Materials 8 (4), S. 1701257.
  4. Hegge, Friedemann; Sharman, Jonathan; Moroni, Riko; Thiele, Simon; Zengerle, Roland; Breitwieser, Matthias; Vierrath, Severin (2019): Impact of Carbon Support Corrosion on Performance Losses in Polymer Electrolyte Membrane Fuel Cells. In: Journal of The Electrochemical Society 166 (13), F956.


  1. Shanahan, Brian; Britton, Benjamin; Belletti, Andrew; Vierrath, Severin; Breitwieser, Matthias (2021): Performance and stability comparison of Aemion™ and Aemion+™ membranes for vanadium redox flow batteries. In: RSC advances 11 (22), S. 37923-37927.
  2. Shanahan, Brian; Böhm, Thomas; Britton, Benjamin; Holdcroft, Steven; Zengerle, Roland; Vierrath, Severin et al. (2019): 30 μm thin hexamethyl-p-terphenyl poly (benzimidazolium) anion exchange membrane for vanadium redox flow batteries. In: Electrochemistry Communications 102, S. 37–40.
  3. Vierrath, Severin; Zielke, Lukas; Moroni, Riko; Mondon, Andrew; Wheeler, Dean R.; Zengerle, Roland; Thiele, Simon (2015): Morphology of nanoporous carbon-binder domains in Li-ion batteries—A FIB-SEM study. In: Electrochemistry Communications 60, S. 176–179.
Our research is funded by